
Data Deduplication in Slovak Corpora

Vladimír Benko

Ľ. Štúr Institute of Linguistics, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract. Our paper describes our experience in deduplication of a Slovak
corpus. Two methods of deduplication – a plain fingerprint comparison and an
n-gram comparison – are presented and their results compared.

1 Introduction

Deduplication is a special technique of detection and removal of duplicate contents in
digitally stored data. Motivations for such activity include a more efficient use of data
storage space (duplicate data can then be stored in a single copy only), detection of
plagiarism (sections of identical text without proper quoting usually indicates an author’s
inappropriate activity), or decreasing the size of index structures in data retrieval
systems.

In text corpora, the problem of duplicate contents started to be strongly felt with the
advent of web corpora. Duplicate texts distort frequencies of occurrence of lexical units
and bias the statistics used to compute collocations. Expressions of low frequency found
repeatedly in duplicate documents or paragraphs tend to receive very high scores of
salience. In the Word Sketch Engine, that is being used at our Institute in lexicographic
projects [1], such collocations appear in first place in the respective tables, causing
undesirable noise. The resulting concordance then looks as follows:

28 Vladimír Benko

Subsequent analysis shows that out of 35 occurrences of the collocation obete
medzinárodných ozbrojených konfliktov “victims of international armed conflicts”, only 2
are really unique and all the rest are just repetitions of the same sentence within the
same law or in its various revisions.

2 Plain Fingerprint Deduplication

Detecting duplicates by direct pair-wise text comparisons in large collections is
technically not feasible as the number of comparisons grows quadratically. There exists,
however, a simple method that decreases the computational complexity of this task
dramatically. It is based on the idea that, for each data segment under comparison, it is
sufficient to compute a “fingerprint”, i.e. a short fixed-length bit pattern [2] where equal
data will have an equal value of their fingerprints.1 The fingerprints can be computed,
e.g., by means of a cryptographic hashing algorithm. Duplicate fingerprints can be easily
detected by their sorting and subsequent unification [3]. This method leads to detection
of exact (100%) duplicates.

In reality, this method can be easily implemented by means of standard Linux
utilities sort, uniq and md5sum, complemented by two simple filters.

In regard to paragraph-level deduplication in a text corpus, the whole procedure can
look as follows. Firstly, a paragraph identifier is assigned to each paragraph. Than a
filter is used that will save the contents of each paragraph into a work file and call
the md5sum program to compute the fingerprint that will be appended (along with the
paragraph's identifier) to the fingerprint file.

1c32b3d252f2f66207352c95e02f04f5 0000000.00000
4d7d068d0e8c37aaf76619afdb41c937 0000000.00001
41a4459ed67cf1d15cca63b8e3efac6c 0000000.00002
ae5eae7f1645cbaa0d617a2089feea89 0000000.00003
...
af22e8df9bc9bfd3930d433b9fec39c7 1500125.00827
e98135d33b38729a90c3fb0465e25b62 1500125.00828
52ab380379a284145b89cca9a3581567 1500125.00829
d19c7528f54b7c4a968899c804675b0a 1500125.00830

After sorting the fingerprint file according to the first column, the duplicate
fingerprints will appear together (we have marked them with an asterisk).

0000002797f70f8e9f666fb407db5195 1499872.00389 *
0000002797f70f8e9f666fb407db5195 1499876.00388 *
000000466f8914041e68767a38f392a0 0601609.01350
00000097f3f4b3521ceb78e26c000213 1465277.00301
0000019b4aeb3b3f8bf80bef210361ed 1304808.00003
000001f224498662798071a5580c7d80 0660013.00012
00000216af425ae2ac4112994546c9ef 0089946.00013 *
00000216af425ae2ac4112994546c9ef 0091158.00012 *
00000257b12f4211909124d2b7f18fc5 0979319.00019
...

1 In using hash functions, there exist situations where two unequal segments have equal hash
values (so-called collision). Although the probability of this happening is non-zero, it is so small
that (in the context of language corpora) it can be safely ignored.

Data Deduplication in Slovak Corpora 29

As a result of unification, each different fingerprint value in the file will appear just
once.

0000002797f70f8e9f666fb407db5195 1499872.00389 *
000000466f8914041e68767a38f392a0 0601609.01350
00000097f3f4b3521ceb78e26c000213 1465277.00301
0000019b4aeb3b3f8bf80bef210361ed 1304808.00003
000001f224498662798071a5580c7d80 0660013.00012
00000216af425ae2ac4112994546c9ef 0089946.00013 *
00000257b12f4211909124d2b7f18fc5 0979319.00019

In the end, the file will be sorted according to second column, which will result in
the list of paragraphs that are not to be removed. The final simple filter will remove the
duplicate paragraphs in the original source file.

2.1 Deduplication in the Slovak National Corpus

Up to Version 5.0 of the Slovak National Corpus (SNC), the data duplicity problem has
not been seen as very important, as most duplicities were avoided by careful selection of
the source texts. The situation, however, has rapidly changed with the advent of Version
6.0 that received a large collection of newspaper texts form the Petit Press Publishing
House. These contained a large amount of data from Slovak regional weeklies where
many articles were identical. The respective documents represented print pages
converted from PDF format, where, due to imperfection of the conversion procedure,
the paragraph breaks of identical texts were not identical.

2.2 Paragraph-level Deduplication

In the following text we shall present the results of the plain fingerprint deduplication
method applied to the largest SNC corpus – prim-6.0-juls-all [4]. The first filter
mentioned in the previous section was modified so that it would not take into account
punctuation, special graphic characters, and digits. This allowed us to also identify as
duplicates paragraphs

<p>19.30 Noviny STV</p>
<p>23.45 Noviny STV</p>
<p>1.40 Noviny STV</p>

<p>12. Marseille 14 5 4 5 13:13 19</p>
<p>15. Marseille 15 4 5 6 13:15 17</p>
<p>10. Marseille 18 6 6 6 18:17 24</p>

representing items of the TV schedule and the football league table, respectively, the
differences of which are not lexicographically interesting.

The input source file contained 1,390,408 documents with 51,536,717 paragraphs
containing 1,226,218,915 tokens. The main procedure lasted approximately 19 hours,

30 Vladimír Benko

while the computation of fingerprints took 18 hours and 20 minutes2 (Intel Xeon 2.83
GHz, 8 GB RAM, hardware RAID, Ubuntu 12.10 LTS). The duplicate paragraphs were
not deleted from the corpus but rather just marked so that they would not be taken into
account in computing the word sketches. The advantage of such an approach is that the
corpus user is not deprived of the context at the boundary of duplicate and unique
content.

The result of deduplication is shown in the following table.

Paragraphs removed Paragraphs left Total
Paragraphs 21,251,221 3,085,496 51,536,717
Paragraphs in % 41.24 58.76 100.0
Tokens 167,743,453 1,058,475,462 1,226,218,915
Tokens in % 13.68 86.32 100.0

Now, we would like to know what kind of data have been removed. It is obvious
that only a tiny fraction of the millions of removed paragraphs can be inspected
“manually”. We have therefore decided to perform a frequency analysis of the removed
paragraphs according to their lengths (in tokens). Respecting the expected distribution,
paragraphs were grouped by power of 2, i.e. group “1” contained paragraphs of 1 token,
group “2” paragraphs of 2 and 3 tokens, group “4” paragraphs of 4 to 7 tokens and so
on. The results are summarized in the following table:

Paragraph length Paragraphs removed Paragraphs left Total
1 2,899,765 313,757 3,213,522
2 5,385,687 1,760,629 7,146,316
4 6,430,346 5,065,587 11,495,933
8 4,369,821 6,858,103 11,227,924

16 1,459,344 6,202,353 7,661,697
32 512,667 5,349,893 5,862,560
64 166,836 3,425,382 3,592,218

128 24,435 1,083,748 1,108,183
256 2,218 200,193 202,411
512 93 22,537 22,630

1,024 8 2,811 2,819
2,048 1 443 444
4,096 0 46 46
8,192 0 13 13

16,384 0 1 1
Total 21,251,221 30,285,496 51,536,717

2 It is obvious that a weak point of our implementation is the calculation of fingerprints by calling
an external computationally “expensive” utility. Using a simpler hashing algorithm computed
internally, it can be expected that the processing time could be significantly decreased.

Data Deduplication in Slovak Corpora 31

The table shows that most of the paragraphs in groups 1 and 2 were removed, in
groups 4 and 8 about 50% of the paragraphs were deleted, and from group 16 upwards
most of the paragraphs were left.

It is, however, more important to find out the token count in the deleted paragraphs.

Paragraph length Tokens removed Tokens left Tokens total
1 2,899,765 313,757 3,213,522
2 13,714,814 4,557,662 18,272,476
4 33,490,542 27,787,256 61,277,798
8 45,839,898 75,856,713 121,696,611

16 30,790,283 139,059,109 169,849,392
32 22,213,759 241,725,320 263,939,079
64 14,072,053 300,236,783 314,308,836

128 3,949,428 182,717,735 186,667,163
256 700,310 66,312,816 67,013,126
512 58,514 14,489,082 14,547,596

1,024 10,412 3,835,447 3,845,859
2,048 3,675 1,169,544 1,173,219
4,096 0 250,981 250,981
8,192 0 146,055 146,055

16,384 0 17,202 17,202
Total 167,743,453 1,058,475,462 1,226,218,915

We can visualize the above data expressed in percentages in two graphs.

The columns in the first graph represent percentage shares of the respective
paragraph groups with respect to the total number of corpus paragraphs. The
light-coloured shading depicts the removed paragraphs and the dark shading indicates
the paragraphs left. We can see that the first four groups contain the major portion of
the removed paragraphs. The share of removed paragraphs declines sharply with the
increasing length of the paragraphs. This is quite consistent with our intuition, as we can
expect to have more matches in shorter paragraphs.

32 Vladimír Benko

The second graph depicts the situation with tokens. The tendency is similar to the
previous graph, and we can see that the largest contribution to the removed tokens
comes from group “8”. It is also quite interesting to find out that even group “64”
contributes to the removed tokens considerably.

2.3 Sentence-level Deduplication

After having been deduplicated at the paragraph level, our corpus was processed by the
Word Sketch Engine. Despite the removal of most duplicate concordance lines in the
corpus, our lexicographers were not completely satisfied with the result. We therefore
decided to repeat the whole procedure again, using the same technology at the sentence
level.

The assignment of sentence identifiers revealed that there were 100,915,602
sentences in the corpus, which was roughly twice as many as the number of paragraphs.
The deduplication was performed on a different computer (Intel Core i5 3.2 GHz, 12
GB RAM, software RAID, Ubuntu 12.10) and lasted approximately 55 hours3. The
results were evaluated in a similar way as those of the paragraphs.

Removed Left Total
Sentences 36,704,850 64,210,752 100,915,602
Sentences in % 36.37 63.63 100.00
Tokens 231,847,624 994,371,291 1,226,218,915
Tokens in % 18.91 81.09 100.00

If we compare the share of removed tokens by sentence-level deduplication with that
of paragraph-level, we shall see that the number of removed tokens has increased 1.38
times and it represents almost 19% of all corpus tokens. The following graphs visualize
the distribution of removed sentences and tokens by sentence length. The tendency
shown in the graphs is similar to that of paragraph deduplication, with the difference
being the greater contribution of shorter deleted segments (sentences).

3 The computing time compared to the previous run was unexpectedly long. It is not clear what
was the cause of this behaviour as all parameters of the computer used were higher (with the
exception of the software RAID).

Data Deduplication in Slovak Corpora 33

After this second deduplication phase the number of duplicate concordances
observed by our users dropped to a minimum. We have decided to use this method also
for other corpora of the SNC collection.

3 Detecting Near-duplicate Contents

As an alternate tool we decided to use the recently released open-source utility Onion4

designed to detect near-duplicate contents in language corpora. This program was
created within the framework of the PhD research of Jan Pomikálek at Masaryk
University in Brno [5].

Onion (“One Instance Only”) is also based on fingerprints but it does not compare
whole segments but rather just n-grams of selectable length (7 by default). The input file
is expected to be in one-column vertical format and it is processed in one pass. In the
default mode, the deduplication is performed at the level of paragraphs marked by the
<p> ... </p> tags. A paragraph is considered duplicate if it contains more than the
threshold level of n-grams already encountered in previous text. The similarity threshold
is a value in the range between 0 and 1, where 1 means a 100% match. The user can
select deduplication at the level of segments marked by any pair of tags, with the most
obvious values being documents and sentences. The duplicate segments can either be
removed completely or indicated by a special mark in the first column of the output file.
Implementation is optimized for speed (the fingerprints are computed by a compu-
tationally “cheap” routine BUZ Hash [6] and all data structures are stored in main
memory) so the size of the corpus processed is limited by the size of available RAM
only. Memory requirements can be substantially decreased by an alternate mode of
program operation, where all computed fingerprints are saved into a file and
deduplicated first. In the second pass it is necessary to keep only the duplicate
fingerprints in the memory. According to information provided by the author, under
typical conditions memory use can drop to only 10%. In this alternate mode of
operation, the saved fingerprints can also be reused in subsequent experimentation with
different values of similarity threshold and/or different levels of deduplication.

4 URL: http://code.google.com/p/onion/

34 Vladimír Benko

3.1 The Onion Experiment

To get an idea of the number of near-duplicates detected by n-grams of tokens, we
decided to run an experiment with Onion applied to the corpus mentioned in the
previous section. As Onion expects to get the input data in one column, at the beginning
of our experiment the columns containing morphological annotation (Lemma, Tag) were
removed from the source file.

3.2 Document-level Deduplication

As a first step, we decided to observe the level of deduplication at the document level by
means of 5-, 7- and 10-grams with four values of similarity threshold (0.5, 0.7, 0.9, and
0.95, respectively). For each value of n-gram we let Onion pre-compute the fingerprints
first, which were subsequently used for deduplication with different values of similarity
threshold. The computation of fingerprints lasted on average 27 minutes and the
respective deduplication passes lasted typically 32 minutes.

The results of the deduplication are summarized in the following tables. The first one
shows the numbers of removed documents with different values of n-grams and
threshold levels.

Similarity threshold 5-grams 7-grams 10-grams
0.5 269,076 137,780 110,108
0.7 136,158 92,215 77,183
0.9 69,572 54,864 47,381

0.95 49,498 38,140 31,098

The above values expressed in per cents can be visualized as follows:

The next table indicates how the various deduplication parameters influence the
numbers of removed tokens.

Data Deduplication in Slovak Corpora 35

Similarity threshold 5-grams 7-grams 10-grams
0.5 354,704,820 194,226,021 139,317,046
0.7 174,064,712 94,776,159 71,304,396
0.9 50,434,177 36,612,604 29,284,459

0.95 32,465,363 24,242,558 21,209,472

Again, the situation expressed in percentages can be visualized by a graph.

The graphs show clearly that with a low similarity threshold (0.5), the share of
removed texts and tokens is strongly dependent on the value of n-grams. On the other
hand, with a “conservative” setting of the threshold (0.9, 0.95) the value of the n-grams
has only a limited influence.

In the end we show the frequency distribution of the removed tokens by the length
of documents (for 10-grams).

An interesting observation is the rapid increase in the number of deleted tokens with
the low frequency threshold within the longer documents. This phenomenon deserves
further inspection.

36 Vladimír Benko

3.3 Paragraph-level Deduplication

The second experiment aimed at deduplicating paragraphs was performed with identical
settings. Onion was run in the “no smoothing” mode5. The following tables report the
numbers of removed paragraphs.

Similarity threshold 5-grams 7-grams 10-grams
0.5 23,119,807 16,541,810 12,697,603
0.7 20,164,592 15,294,473 12,027,316
0.9 17,353,000 13,738,966 11,187,422

0.95 16,652,531 13,285,899 10,890,177

And the graph expressing this in percentages.

The situation with tokens looks like this.

Similarity threshold 5-grams 7-grams 10-grams
0.5 364,942,345 245,171,349 203,061,064
0.7 276,284,030 217,137,998 184,798,690
0.9 218,857,869 184,131,198 161,354,010

0.95 201,514,920 171,852,183 152,246,068

The last graph shows the percentage of removed tokens.

5 In the “smoothing” mode Onion removes also short non-duplicate paragraphs between two
duplicate ones.

Data Deduplication in Slovak Corpora 37

We can see that with “aggressive” parameter settings, the deduplication procedure
would remove 45% of paragraphs containing 30% of tokens. With the more
conservative settings the respective curves approach the 15% level, which is quite
similar to the 13.7% achieved by the plain fingerprint method.

We also show the frequency distribution of removed tokens (for 10-grams).

If we compare this graph with the similar one from the plain fingerprint method, we
can see that Onion prefers removing paragraphs of medium length where partial match
is more likely to happen. Based on these findings we decided that Onion will not be
used for deduplication on the sentence level.

3.4 What Has not Been Removed by Onion

The last interesting question is which paragraphs were removed by the plain fingerprint
method but remained undetected by Onion. Our analysis was performed just with the
most conservative values of Onion settings (10-grams, threshold-level of 0.95), where
the results were expected to be most similar.

The frequency distributions of the removed paragraphs and tokens are depicted in
the following graphs.

38 Vladimír Benko

We can see that Onionʼs weak point is the ignorance of duplicates in short
paragraphs. According to our analysis, this is mainly caused by the fact that paragraphs
shorter than the length of the n-gram are considered duplicate only in the case when the
n-grams also match the respective tokens from the end of the previous paragraphs. With
the shorter paragraphs, there is also a greater chance of partial match with ignored
punctuation and digits implemented in our simple method.

4 Conclusion and Further Work

In our paper, we have compared the results of deduplication achieved by two methods –
with a plain fingerprint method and by means of Onion. While in detecting exact
duplicates the situation is fairly simple, in the detection of near-duplicates there is always
a trade-off between the amount of “good” text to be lost and the amount of duplicate
contents that will remain in the corpus.

Onion is a very fast and versatile tool that can be conveniently used to detect
near-duplicates both at the document and the paragraph level. Its main deficiency is the
inability to detect duplicates in short paragraphs. Our suggestion for corpus
deduplication is therefore based on a combination of both tools. The whole process
would consist of three stages. In the first stage the corpus is deduplicated by Onion at
the document level with conservative levels of the parameters (duplicates are removed).
In the second stage Onion deduplicates paragraphs (duplicates are marked). And in the
last stage the short duplicates are “cleaned” by the plain fingerprint method at the
sentence level.

In the future we want to optimize computation of fingerprints in the plain method
and apply the results of our research to the whole SNC collection of corpora, as well as
to the newly created Slovak web corpus.

References

[1] Benko, V. (2010). Optimizing Word Sketches for a large-scale lexicographic project.
Invited lecture. URL: http://videolectures.net/korpusi2010_benko_ows.

[2] Rabin, M. O. (1981). Fingerprinting by Random Polynomials. Center for Research in
Computing Technology. Harvard University. Tech Report TR-CSE-03-01. URL:
http://www.xmailserver.org/rabin.pdf, retrieved 10 May 2013.

Data Deduplication in Slovak Corpora 39

[3] Broder, A. Z. (1993). Some applications of Rabin’s fingerprinting method. In Sequences
II: Methods in Communications, Security, and Computer Science. Springer-Verlag. URL:
http://xmail.eye-catcher.com/rabin_apps.pdf, retrieved: 28 April 2013.

[4] Slovak National Corpus – prim-6.0-juls-all. (2013). Bratislava: Ľ. Štúr Institute of
Linguistics, Slovak Academy of Sciences. Accessible at:
http://korpus.juls.savba.sk.

[5] Pomikálek, J. (2011). Removing Boilerplate and Duplicate Content from Web Corpora.
Ph.D. Thesis, Faculty of Informatics, Masaryk University in Brno. URL:
http://is.muni.cz/th/45523/fi_d/phdthesis.pdf, retrieved 14 June 2012.

[6] Uzgalis, R. (1995). Random Numbers, Encryption, and Hashing. Lecture Notes. Computer
Science Department, University of Auckland. URL:
http://www.serve.net/buz/Notes.1st.year/HTML/C6/rand.012.html,
retrieved 20 April 2013.

