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Foreword

Deep learning and neural approaches are indispensable in modern Natural Lan-
guage Processing and generally in all kinds of linguistic data analysis tasks.
This workshop is aimed at deep learning in connection with linguistic data and
the effective use of deep learning in understanding the specificities of linguistic
data. The submissions collected in this book of abstracts deal with deep learning
used to improve named entity recognition; BERT in conjunction with a com-
pilation of lexical patterns to automatically acquire lexico-semantic relations;
using transformer models to predict discourse relations and speaker’s attitudes;
using transformer models to automatically extract terminological concept sys-
tems; and an automatic detection of rhetorical patterns in academic texts us-
ing machine learning algorithms designed for image object detection purposes
trained on the page layout and graphical elements.

The workshop shows just a small fraction of the variety of problems that
modern deep learning methods can successfully tackle, and demonstrates the
usefulness of linguistic linked open data, as results of and interconnected with
neural approaches.

Radovan Garabík, Dagmar Gromann
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Extended Abstract

Terminological Concept Systems (TCS) provide a means of organizing, struc-
turing and representing domain-specific multilingual information and are im-
portant to ensure terminological consistency in many tasks, such as translation
and cross-border communication. Several methods for Automated Term Extrac-
tion (ATE) have been proposed that extract terms, i.e., single- or multi-word
sequences, from domain-specific texts. ATE plays a role in many NLP tasks,
such as information extraction, knowledge graph learning, and text summa-
rization. An initial classification of ATE methods into statistical, linguistic or
hybrid has recently been refined by [1] to methods based on term occurrence
frequencies (e.g. C/NC-value), occurrence contexts, domain-specific corpora
combined with general language corpora (e.g. Weirdness), topic modeling, and
those utilizing Wikipedia. Even though the use of neural networks in ATE is
mostly limited to generating embeddings, few exceptions exist that could not
be accommodated by this classification.

A first use of BERT-based language models is documented by [3] and [9]
rely on LSTM, GRU and BERT embeddings to achieve high F1 scores for
Lithuanian ATE in the cybersecurity domain. Inspired by this first success of
transformer-based models, we investigated two variations of the multilingual
pretrained language model XLM-RoBERTa (XLM-R) [2] with an innovative
use of the multilingual pretrained NMT model mBART [6]. Taking a natural
language sentence as input, the model should predict all sequences of varying
length that represent a domain-specific term. For instance, for the sentence
“We meta-analyzed mortality using random-effect models” the model should
output the individual terms meta-analyzed, mortality and random-effect models.
Our best model, an XLM-R fine-tuned sequence classifier [5], outperformed the
BERT-based baselines by 9 to almost 12% F1 score in English, French, and
Dutch of the ACTER [8] and performed well for the ACL RD-TEC 2.0 dataset
[7] without baseline.

In order to extract a TCS, a method to detect interrelations between ex-
tracted terms across languages is required. To the best of our knowledge this
combination has not been proposed and relation extraction focuses mostly on
extracting named entities and their interrelations. We present a method and
tool called Text2TCS1 that automatically extracts terms (including named
1 https://text2tcs.univie.ac.at/
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entities), groups them by synonymy into concepts, and detects their interrela-
tions from text. We consider a pre-specified typology of terminological relations
common in terminology science from hierarchical, i.e., generic and partitive, to
non-hierarchical, e.g. ownership, instrumental, spatial relations. For instance,
from the example terms previously extracted the model should predict an in-
strumental relation going from random-effect models to meta-analyzed.

The objective to extract a TCS from text in one language with a pre-
specified relation typology is to facilitate the comparison to a TCS extracted
from a text in another language. Since relations not only exist between terms
that occur in the same sentence, we trained an intra-sentence level model [11]
and complemented it with a document-level relation extraction model that is
able to detect term relations without context and irrespective of the position of
the terms in text (this model is based on our winner of the CogALex-VI Shared
Task [10]). For the joint relation and term extraction we tested several existing
datasets, appropriating them to the typology of relations we utilize, especially
SemEval 2010 Task 8 [4]. However, the distribution of relations in those datasets
is biased towards generic relations, which is one of the reasons why we decided
to provide our own gold standard annotations in German and English by two
terminological experts and a silver standard annotation in several languages
by students of a translation master. We consider the latter a silver standard,
since students were asked to provide the data in German and one or two other
languages of their choice depending on availability. The comparison to the
German gold standard showed a lower number of annotations in student works.

A TCS serves the objective to explicitly structure terminological knowledge
and relations implicit in a text and thereby aid specialized communication and
knowledge transfer. Training based on fine-tuned pre-trained Transformer mod-
els has focused on English and German, evaluation was additionally performed
on Spanish, Portuguese, French, Italian, Romanian, and Russian, and in to-
tal supports at least 22 languages at inference time2. The tool will soon be
available on the European Language Grid3. A TCS is an important language
technology to generate language resources for the Linguistic Linked Open Data
(LLOD) cloud. Currently, Text2TCS outputs TBX/XML as well as a TSV-
based generic format and we intend to complement TBX/RDF to facilitate its
LLOD-compatibility.
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Extended Abstract

Speaker attitude detection is important for processing opinionated text. Sur-
vey data as such provide a valuable source of information and research for dif-
ferent scientific disciplines. They are also of interest to practitioners such as
policymakers,  politicians,  government bodies, educators,  journalists,  and all
other stakeholders with occupations related to people and society. Survey data
provide evidence about particular language phenomena and public attitudes to
provide a broader picture about the clusters of social attitudes. In this regard,
attitudinal discourse markers play a central role in the sense that they are
pointers to the speaker's attitudes. These single word or multiword expressions
(MWE) are mainly drawn from syntactic classes of conjunctions, adverbials,
and prepositional phrases (Fraser, 2009), as well as expressions such as  you
know,  you see,  and  I  mean (Schiffrin,  2001;  Hasselgren,  2002;  Maschler  &
Schiffrin, 2015). Discourse markers are regarded as significant discourse rela-
tions’ triggers, and, consequently, are largely studied (e.g. Sanders et al. 1992;
Knott & Dale 1994; Wellner et al 2006; Taboada & Das 2013; Das 2014; Das
& Taboada 2019; Silvano 2011). Recently, discourse relations and discourse
marker research has gained certain impetus with corpora annotation for ex-
ploring  discourse  structure  in  texts,  for  example,  RST-DT English  corpus
(Carlson,  Marcu  &  Okurowski  2003);  Penn  Discourse  Tree  Bank  (PDTB)
(Prasad et al. 2008); SDRT Annodis French corpus (Afantenos et al., 2012).
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The large bulk of these corpora is manually annotated, mostly by trained
linguists,  less by non-experts, and only a reduced number undergoes auto-
matic/semiautomatic annotation (with human supervision).

This study describes ongoing work whose ultimate goals are: (i) to collect
methods for appropriate processing of free text answers to open questions in
surveys with respect to speaker attitudes identified by discourse markers; and
(ii) to establish guidelines for the creation of LLOD vocabularies for discourse
markers. In particular, this paper presents the process of constituting a multi-
lingual corpus, creating an annotation schema of discourse relations for mark-
ing the discourse markers, and applying machine learning transformer models
to predict their appearance in unknown texts. We apply a two-step approach
to detecting speaker attitudes by identifying discourse markers and the seman-
tics of  the discourse relations they introduce in text using neural machine
learning  transformer  models  to  ensure  the  interlinking  of  multilingual  dis-
course markers.

To achieve the aforementioned goals, so far, we have created a parallel cor-
pus containing data from 6 languages, using the publicly available TED Talk
transcripts. It is an ongoing expansion of TED-EHL parallel corpus published
in  LINDAT/CLARIN-LT  repository  http://hdl.handle.net/20.500.11821/34.
The multilingual corpus contains alignments of Lithuanian, Bulgarian, Por-
tuguese, Macedonian, and German languages with English as pivot language
with a size of 1.3 million sentences. Secondly, we constitute a vocabulary of
multiword expression that can play the role of discourse markers in text based
on theoretical insights by Schiffrin (1987) and classification provided by Fraser
(2009). The next step was the manual annotation of the 2428 English-Bulgar-
ian-Lithuanian aligned sentences containing the multiword expressions (MWE)
as discourse markers or content expressions (1 or 0). Example (1) below classi-
fies the multiword expression you know as a discourse marker (annotated 1)
used to introduce a new discourse message, whereas example (2) represents
content words (annotated 0) fully integrated into the sentence. 

(1) That's  ridiculous.  You  know,  this  is  New York,  this  chair  will  be
empty, nobody has time to sit in front of you.

(2) You know some people who say “Well”

The annotated corpora have been used to train machine learning models to
predict the existence of discourse markers in a text. Because we had a multi-
lingual dataset, we chose FastText (Joulin et al. 2016) XLM-Roberta (Con-
neau et al. l 2019) as the base models. The model was fine-tuned using the k-
train library (Maiya 2020),  a low-code Python library built  on top of  the
state-of-the-art Transformers library (Wolf et al. 2020). The dataset was di-
vided 80-20 for train and test datasets, and the model was trained using a
learning rate of 0.00001 for three epochs. The dataset was slightly unbalanced
(53% records without a discourse marker and 47% with a discourse marker),
so we used class balancing weights to compensate. The model fine-tuning was
run ten times, and the average performance is reported in Table 2.

Table 1 shows an example of annotated corpus used for training the trans-
former models.
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Table 1: Example of annotated corpus entries
MWE Sentence

chunk
Context Discourse

Marker
Presence

I remember And I 
remembered that
the old and 
drunken guy

destroying my statistical significance of
the test. So I looked carefully at this 
guy. He was 20-some years older than 
anybody else in the sample. And I re-
membered that the old and drunken 
guy came one day to the lab wanting 
to make some easy cash

0

You know But you know, 
these stories,

because he would have pulled the 
mean of the group lower, giving us 
even stronger statistical results than 
we could. So we decided not to throw 
the guy out and to rerun the experi-
ment. But you know, these stories, and
lots of other experiments that we've 
done on conflicts of interest, basically 
kind of bring two points

1

The results of the two trained models for English is given in table 2 and figure
1 below. As this is the first attempt to identify the presence of discourse mark-
ers in unseen text with transformer models we think the results are promising.

Table 2: Results FastText XLM-RoBERTa-Large
FastText XML-Roberta-Large

Accuracy 0.46 0.90
Precision 0.65 0.87
Recall 0.19 0.97
Specificity 0.85 0.78
F1-Score 0.30 0.90
MCC 0.05 0.79

Figure 1: Confusion matrices – FastText and XLM-RoBERTa-Large

Regarding the semantics of discourse markers, we are adopting ISO 24618-8
annotation scheme to semantically annotate discourse relations as carriers of
speaker attitudes in English, and Chiarcos (2014) methodology to represent
them as LLOD and extend the semantic vocabularies of discourse relations
(reference). Consequently, we will apply transformer models to predict the se-
mantics of present discourse markers in unseen text in the 6 languages of the
research.
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Extended Abstract

Whether for the creation or for the enrichment of lexical knowledge
bases (LKBs) like WordNet [4], there is a long research history on the
automatic acquisition of lexico-semantic knowledge from textual corpora.
Following the seminal work of Hearst [9], much relies on lexico-syntactic
patterns where related words tend to occur, e.g., “X1, such as X2”, for
X1 is-a-hypernym-of X2.

In the last decade, research interest shifted to efficient models of distribu-
tional semantics, where words are represented by vectors learned from large cor-
pora, also a friendlier format for machine learning. Word2vec [10] or GloVe [12]
are good for computing word similarities, but fail to have explicit representa-
tions of semantic relations, even if some can be obtained through analogy [5].

More recently, transformer-based models, like BERT [2] or GPT [14], be-
came the paradigm. They are useful for a broad range of tasks, but are also
not ready for providing explicit semantic relations. Yet, they provide a short-
cut for earlier corpora-based approaches, because they are pre-trained in large
collections of text and are good at filling blanks or computing the probabil-
ity of sentences, including those using the aforementioned patterns. It is thus
no surprise that such models have been assessed for the presence of relational
knowledge [13], for relation induction [1], and it has been noted that they per-
form particularly well in the acquisition of hypernyms [3]. While the previous
target English, recent work [11] has exploited BERT for detecting hyponymy
pairs in Portuguese.

In this work, we explore BERTimbau [15] base, a BERT model pre-trained
for Portuguese, in the acquisition of lexico-semantic relations. For this, we com-
piled a list of patterns for the relations covered by TALES [7], a dataset created
for assessing lexico-semantic analogies in Portuguese. For each relation, TALES
includes 50 entries with two columns: a word (question) and a list of related
words (answers). An example for hyponymy-of is: água líquido/substância
(water liquid/substance). Some considerations had to be made when creating
the patterns, such as avoiding patterns starting with a mask, because many sug-
gested fillers were functional words; or including patterns for both masculine
and feminine arguments.
⋆ This work was partially supported by: the COST Action CA18209 Nexus Linguarum (European

network for Web-centred linguistic data science); national funds through the FCT – Foundation
for Science and Technology, I.P., within the scope of the project CISUC – UID/CEC/00326/2020
and by the European Social Fund, through the Regional Operational Program Centro 2020.
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Each pattern was used to predict the answers given the question words in
TALES, and their accuracy was compared with LRCos [5] computed in a GloVe
model for Portuguese [8]1. The latter was outperformed for six relations (out
of 14), for which table 1 presents the best-performing pattern, their accuracy
and accuracy at the top-10 answers, in comparison with LRCos. For each en-
try of the target type in TALES: X1 was replaced by the question word and
predictions for the [MASK] tag were used as answers.

Relation BERT LRCos
Pattern Acc Acc@10 Acc Acc@10

Antonym-of ou [MASK] ou X1 0.32 0.42 0.20 0.46
Hypernym-of (abstract) a [MASK] é uma espécie de X1 0.24 0.56 0.08 0.56
Hyponym-of (abstract) X1 é um tipo de [MASK] 0.14 0.52 0.08 0.38

X1 ou outro [MASK] 0.14 0.42 0.08 0.38
Hyponym-of (concrete) X1 é um tipo de [MASK] 0.54 0.88 0.28 0.56

Part-of um [MASK] tem X1 0.12 0.30 0.06 0.28
Has-Part um [MASK] é uma parte de X1 0.12 0.28 0.06 0.24

Table 1. Patterns that outperform LRCos.

Results suggest that, even though a pre-trained BERT is not ready for being
directly used in the automatic enrichment of LKBs, it is a great source of such
knowledge. Transforming it to explicit relation instances, e.g., represented in
RDF, does not require fine-tuning and is mostly a matter of finding the right
lexical patterns. Moreover, for better accuracy, results may be further filtered
by humans or by dedicated automatic procedures.

As in previous work for English [3], we confirmed that BERT works partic-
ularly well for the acquisition of hypernyms, especially if concrete concepts are
involved2. On the other hand, no tested pattern outperformed LRCos for hyper-
nym between verbs, nor for synonymy between nouns, verbs or adjectives. The
main reason for this is the lack of patterns identified for these relations. More-
over, as other studies have shown [7], for synonymy, LRCos leads to minimal to
no improvements, when compared to simply computing the cosine similarity.

Future plans include: (i) improving accuracy by combining several pat-
terns (e.g., including longer patterns, acquired from corpora [1]) and ranking
measures; (ii) analysing how well sentence probability correlates with relations
prototypicality, e.g., approximated by the number of resources where a relation
instance is found [6].
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Extended Abstract

In the context of the recent international project "Multilingual Resources for
CEF.AT in the legal domain" (MARCELL)1 a large comparable corpus of legal
documents for 7 languages (Bulgarian, Croatian, Hungarian, Polish, Romanian,
Slovak, Slovenian) was created [7]. This includes a monolingual sub-corpus for
the Romanian language [6]. The Romanian corpus, as well as the other MAR-
CELL corpora, was split at sentence and token level, lemmatized, and an-
notated at token level. Annotations comprise part-of-speech tags, dependency
parsing, named entities and finally the corpus was enriched with IATE and EU-
ROVOC terminologies. Named entities were identified using a general-purpose
tool [3], available at that time for the Romanian language. The tool was not
trained on any legal texts.

Previous studies [1] have shown that named entity recognition (NER) plays
an important role in machine translation. Initial evaluation of the Romanian
NER system on the MARCELL sub-corpus (as reported in [6]) provided rather
modest results (an overall precision of 64.1%). This made us consider improving
the recognition performance by (a) constructing a manually annotated corpus
in the legal domain and (b) a fine-tuned domain-specific NER system. This
work presents an overview of the created gold corpus and initial experiments
in creating a NER system for the Romanian legal domain.

The LegalNERo [4] corpus was constructed with the help of 5 annotators
under the supervision of two researchers with experience in corpus annotation.
The entities considered are: persons, locations, organization, time and legal
references. There are 17,429 total entities, grouped in 370 documents, com-
prising 8,284 sentences. Inter-annotator agreement provided good results, with
an average Coehn’s Kappa of 0.89. The released corpus contains annotations
at text-span and token levels. Locations were marked with GeoNames codes,
where an automatic identification was possible. The resulting corpus was as-
sembled in RDF format, specific to linguistic linked open data, including all
the available annotation levels. The corpus is freely available for download2

and it can be accessed online using a Sparql endpoint3. The Sparql endpoint

1 https://marcell-project.eu/
2 https://doi.org/10.5281/zenodo.4772094
3 https://relate.racai.ro/datasets/dataset.html?tab=query&ds=/legalnero
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allows easy extraction of entities from the corpus, useful for creating gazetteer
resources for NER systems.

Initial experiments using NeuroNER [2] produced two models: (a) for recog-
nizing all the entities, yielding an F1 score of 84.00 %, and (b) for recognizing
only persons, locations, organizations and time expressions in the legal domain,
yielding and F1 score of 84.70%. For constructing the models we used word
embeddings [5] constructed using the Representative Corpus of Contemporary
Romanian Language (CoRoLa). These models form a baseline for further fine-
tuning and creating improved NER models for the Romanian legal domain.
Additional experiments, with different neural architectures as well as different
embedding representations, are currently under way. Until better models will
become available, the current baseline models are available for online usage
from the RELATE platform 4.
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Abstract. The rhetorical structure of academic research papers writ-
ten in English is now well understood, much less is known about the
generic conventions governing academic texts written and published in
less-studied languages. This article investigates the automatic detection
of rhetorical patterns in academic texts using machine learning algo-
rithms which were originally designed for image object detection pur-
poses, and are thus entirely language independent. Our initial results
indicate that this graphical, image-based approach to genre analysis is
feasible. We intend to extend our approach to the detection of local
variants and the rules of those variants.

Keywords: Object detection · Deep learning · Academic writing.

1 Introduction

Our understanding of rhetorical structures in academic texts took a giant leap
with the rise of the genre-based approach pioneered by Swales [1]. This un-
derstanding, however, is substantially limited to academic writing in English;
much less is known about traditional or emerging patterns in other languages.
The Bwrite project aims to address this gap by investigating the structural
properties of academic texts (BA, MA, PhD theses, and published scientific
work) published in Estonian, Latvian, and Lithuanian. By studying large num-
bers of texts, we aim to detect patterns on three levels: macro- (whole text),
meso (e.g. paragraphs) , and micro-level (sentence level).

In this paper, we focus on detecting the structure of documents at the
macro level. We investigate whether the internationally standardized IMRaD
(Introduction, Methodology, Results and Discussion) format is also prevalent
in academic papers published in these three Baltic countries, or whether other
structures emerge.

⋆ The Bwrite project (EMP475) is funded by Iceland, Liechtenstein and Norway
through the EEA Grants and Norway Grants.
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2 Document structure: looking, not reading

2.1 Dataset and challenges

Our database was built from publicly available texts from various universities
and consists of full texts in PDF format. This format gives us two possibil-
ities, namely, transforming the PDFs to text or changing the documents to
images. The first option ignores information (e.g. font, font size, layout, etc.)
that may be of fundamental value for the detection of document structure.
Consequently, we selected the second option and considered the documents as
images. Applying object detection methods means that the language in which
the text is written is not relevant; as one does not need to understand the text
to determine the structure of the document, the algorithm focuses exclusively
on the aesthetics of the page layout. Accordingly, the algorithm can be used
on any language, be it English, Estonian or Tamil. We thus transformed our
documents into sets of images, in which one page is equal to one image.

2.2 Pre-processing and methods

We used Open Labeling [2] to manually annotate the training and validation
datasets. The training set contained a thousand images. The validation set
was made of 318 images. These images were pages of academic writing papers
(mostly theses), originating from diverse fields of study and publicly available
online. We drew bounding boxes around areas of interest, namely headers,
tables of contents, titles and body (the latter consisted of paragraphs, tables,
figures, etc.). We then applied the YOLO algorithm developed by Redmon et
al. [3, 4] to analyse the document layouts.

YOLO is a deep learning model, which is trained to draw bounding boxes
around regions of interest. Concomitantly, YOLO estimates the probabilities
of a specific category to be combined with a bounding box. YOLO performs
these tasks using a convolutional neural network. The algorithm also authorizes
multi-label classification permitting the overlap of many different categories
(e.g. we have a ”body” category which contains everything that is not a section
header, a table of content or a title. If one is interested in tables and figures, the
”body” category would cover the ”tables” and ”figures” categories but YOLO
would still be able to understand that a same object (e.g. a table) could also
be part of a larger object (e.g. the body)).

3 Primary results and a brief glimpse at the next steps

The algorithm obtained promising results on the validation set, with a mean
Average Precision of 0.990 [5] on the correct prediction of the image windows.
Once YOLO has made its predictions on our data, we used the coordinates from
the algorithm to extract the regions of interest on each page. Images are heavier
than text: as we treat thousands of documents, we make use of an autoencoder
to reduce their weights. Unlike typical neural networks which find a function
mapping x, a feature, to y, its category, autoencoders find the function that
maps a feature x to itself. An image is transformed into a vector of numerical
values in the encoding stage and, in the decoding stage, the algorithm takes as
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input a vector from the encoder and returns an image as close to the original
document as possible. Moreover these vectors give importance to the position
of the headers in the document, we use them to pursue with the classification.
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